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P-SPLINES USING DERIVATIVE INFORMATION ∗
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AND DANNY C. SORENSEN †

Abstract. Time series associated with single-molecule experiments and/or simulations contain
a wealth of multiscale information about complex biomolecular systems. We demonstrate how a
collection of Penalized splines (P-Splines) can be useful in quantitatively summarizing such data. In
this work, functions estimated using P-splines are associated with stochastic differential equations
(SDEs). It is shown how quantities estimated in a single SDE summarize fast-scale phenomena,
whereas variation between curves associated with different SDEs partially reflects noise induced by
motion evolving on a slower time scale. P-splines assist in “semi-parametrically” estimating nonlin-
ear SDEs in situations where a time dependent external force is applied to a single-molecule system.
The P-splines introduced simultaneously use function and derivative scatterplot information to re-
fine curve estimates. We refer to the approach as the PuDI (P-Splines using Derivative Information)
method. It is shown how generalized least squares ideas fit seamlessly into the PuDI method. Appli-
cations demonstrating how utilizing uncertainty information/approximations along with generalized
least squares techniques improve PuDI fits are presented. Although the primary application here
is in estimating nonlinear SDEs, the PuDI method is applicable to situations where both unbiased
function and derivative estimates are available.

1. Introduction. Our interest is modeling time series associated with single-
molecule simulations/experiments [1–3]. We demonstrate how information in such
time series can be summarized into scatterplot data [2, 5] and how a new method in-
troduced here, the P-splines using Derivative Information (PuDI) method, can be used
to gain better quantitative understanding of these time series containing information
about multiple time scales. The motivation for quantitatively modeling the stochastic
dynamics stems from recent technological advances in single-molecule physics. These
advances have made it possible to manipulate individual macromolecules and mea-
sure various kinetic and thermodynamic properties associated with complex molecules,
such as proteins and nucleic acids, at nanoscale resolution without artifacts associ-
ated with bulk measurements obscuring results. For example, a high resolution atomic
force microscope (AFM) was recently used to measure the force time series associ-
ated with repeatedly unfolding and re-folding a single protein. The study demon-
strated that modifying the chemical environment via ligand concentration alters the
protein folding kinetics [4]. Information of this sort can provide researchers with a
new level of fundamental understanding and can also be exploited in novel nanotech-
nology/molecular medicine applications. However the complexity of the underlying
system and the stochastic dynamics inherent in small scales rarely permit a simple
parametric model to accurately approximate the global stochastic dynamics. Another
complication stems from the fact that the external forces introduced into the system
typically result in non-stationary time series. We demonstrate how the PuDI method
can help in addressing these complications. In this article, the focus in on a benchmark
all-atom molecular dynamics simulation of gramicidin A [3], but the method outlined
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here has already been applied to modeling experimental AFM trajectories [2, 6, 7].
Statistically, these types of applications can be thought of as semiparametric

models that can benefit from regression splines falling under the label of Penalized-
splines (P-splines) [8, 9]. We introduce a simple design matrix that simultaneously
uses noisy function and derivative scatterplot information to approximate nonlinear
curves. The use of both the function and its derivative as “response” data in a P-spline
is a unique part of our approach.

The following notation will be used: xi denotes a design point, f(xi) repre-
sents the function of interest evaluated at xi, ∂f(xi) the corresponding derivative
(df(x)/dx|x=xi

), and ε1, ε2 represent mean zero noise processes, discussed in more
detail later, associated with the noisy estimates of f(xi), ∂f(xi) respectively. Ap-
plications where such data are available include economics [10], geosciences [11], and
single-molecule dynamics [2–4,6,12–15]. The design matrix constructed for the PuDI
method exploits some of the advantageous properties associated with the truncated
power function (TPF) basis set [9, 16] and overcomes the well-known ill-conditioning
issue associated with this basis by using a recently developed stable and efficient algo-
rithm for computing the penalized least squares solutions associated with the P-spline
problem [17]. However other spline basis can be entertained, such as the B-spline basis
as advocated when P-splines were introduced by [8]. Smoothing splines can also be
considered [18], but the ability of P-splines to parsimoniously represent complex non-
linear functions has appeal in longitudinal data [9] and functional data analysis [19]
applications; these techniques show promise in providing a better quantitative under-
standing of batches of complex single-molecule time series [6, 7, 20]. We demonstrate
how information about the (possibly correlated) noise processes can be utilized to
improve function estimates using established Generalized Least Squares (GLS) tech-
niques [21] to modify the PuDI design matrix. Illustrative examples demonstrating
how undesirable results can be obtained when differences in the noise processes (
ε1, ε2) are ignored are presented.

The article is organized as follows: Section 2 quickly reviews established P-splines
results [9]. Section 3 presents the basic ideas behind the PuDI method. The back-
ground and challenges associated with modeling single-molecule dynamics are pre-
sented in Section 4, although we remind the reader that the PuDI method is moti-
vated by single-molecule data sets, it is applicable to other scatterplot situations where
derivative information is available (e.g. [10,11]). Section 5 presents results from both
controlled and single-molecule data situations. Section 6 presents the conclusions and
outlook. MATLAB scripts for fitting general P-splines with our method are provided
in the Supporting Material.

2. Review of P-Spline Notation. The basic regression problem considered
here is to approximate a continuous nonlinear function, f(·) using discrete noisy mea-
surements. Most P-spline approximations take the form:

(2.1) yi = η0 + η1xi . . . ηpx
p
i +

K∑

j=1

ζjBj(xi),

where the Bj(·) represent the selected spline basis used. We introduce the following
notation: Z ≡ [B1, . . . BK ]>, u ≡ [ζ1, . . . , ζK ]>, β ≡ [η0, . . . , ηp]>, y ≡ [y1, . . . ym]>, Xi =
[1, . . . , xp

i ], X ≡ [X>
1 , . . . , X>

m]>. With this notation we can rewrite (2.1) as y =
Xβ + Zu = Cβ′. This mixed model structure serves as a building block for several
more complicated semiparametric models [9].
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P-splines offer the flexibility of different types of penalties, but we will focus on
penalized least squares problems that minimize ‖y − Cβ′‖22 + α‖u‖22 and use ŷ to
denote the least squares estimate for a given α. The data can specify K and/or α.
Several methods can be used for selecting such quantities [22]. In this article we
use generalized cross validation (GCV) to pick the “optimal” smoothing parameter
α̂ ≡ argminαGCV(y, α; C) .

3. The PuDI Method. The PuDI method assumes a noisy unbiased sample
of the underlying function and the corresponding derivatives is available. In this
situation we write the observed data as

(3.1) z = {f(x1), . . . , f(xm), ∂f(x1), . . . , ∂f(xm)}> + ε,

where ε ≡ (ε11, . . . , ε
1
m, ε21, . . . , ε

2
m)> is assumed normally distributed with mean zero

and covariance matrix Σ = WW>. Throughout we assume that Σ is invertible and
not poorly conditioned.

The design matrix we propose makes use of the TPF basis, e.g. in Equation (2.1)
one sets Bj(xi) = (xi − κj)

p
+, where (·)+ is a function that takes real arguments and

is the identity for arguments ≥ zero and is zero otherwise. We construct the various
design matrices using minor transformation of

CPuDI :=




1 x1 . . . xp
1 (κ1 − x1)

p
+ . . . (κK − x1)

p
+

...
...

...
1 xm . . . xp

m (κ1 − xm)p
+ . . . (κK − xm)p

+

0 1 . . . pxp−1
1 p(κ1 − x1)

p−1
+ . . . p(κK − x1)

p−1
+

...
...

...
0 1 . . . pxp−1

m p(κ1 − xm)p−1
+ . . . p(κK − xm)p−1

+




.(3.2)

In terms of a mixed model formulation, the first p + 1 columns correspond to X, the
last K columns correspond to Z, where we assume the random effects κi ∼ N (0, σ2

u)
[9]. With the TPF basis, including of derivative information into the P-spline is
straightforward.

We do not claim that the TPF basis is optimal in any sense. However, it can
readily handle derivative information estimation in situations where the knot spacing
is not uniform, a feature not shared by other popular spline basis like B-splines [8,16].
The intuitive connection to mixed linear models and multivariate regression also has
value.

3.1. The Importance of Weighting Derivatives. We next provide a sim-
ple illustration demonstrating the importance of weighting measurements of different
quality. After we apply simple GLS techniques to CPuDI defined in (3.2), the result-
ing structure is similar to a system of uncorrelated linear regression equations. The
regularization parameter selection, possible departures from normal errors, and non-
parametric bias introduced by too small a value of K make the penalized regression
spline problem slightly more involved than the example considered, but nonetheless,
we demonstrate that intuition on very simple examples carries through to the more
complex regression problem. Furthermore the mixed model framework can also be
used to get a better understanding of some of the features that make the penalized
regression spline problem more involved than standard multivariate regression. For
example it is established [9] that when using a TPF basis in a mixed model framework,
that the smoothing parameter can be expressed as α = σ2

ε /σ2
u, where σ2

ε represents
3



the normal variance of the noise associated with the residual regression error and σ2
u

was introduced in the previous section.
At each design point xi with i = 1, ...,m, we observe a nearly unbiased estimate

z = {y(f)(xi), y(∂f)(xi)}, where y(f)(xi) is an estimate of the function and y(∂f)(xi) is
an estimate of the derivative. The PuDI method can be viewed as using two different
design matrices to estimate one regression coefficient β. These design matrices are
associated with different conditional expectations, i.e. E{y(f)(x)} = C(f)(x)β and
E{y(∂f)(x)} = C(∂f)(x)β, where C(f)(x) and C(∂f)(x) represent the two distinct
design matrices depending on the vector of design points x. Note that the design
matrix shown in (3) consists of two matrix blocks, i.e. the block C(f)(x) is stacked
on top of C(∂f)(x). The importance of using generalized least squares can be readily
seen with the following simplified multivariate example:

Suppose we are given two sets of independent observations: (y(f)
1 , ..., y

(f)
m ) possess-

ing mean µ and variance σ2 for all xi and (y(∂f)
1 , ..., y

(∂f)
m ) having mean µ and variance

cσ2 for all xi , where c > 1 (c serves as an amplification factor). A possible naive esti-
mate would use only the y(f) data: µ̂naive = m−1

∑m
i=1 y

(f)
i . If the unequal variances

are ignored, one might take µ̂unweighted = (2m)−1
∑m

i=1(y
(f)
i + y

(∂f)
i ). The weighted

(generalized) least squares estimate would read µ̂GLS = {(1 + 1/c)m}−1
∑m

i=1

(
y
(f)
i +

(y(∂f)
i /c)

)
. All three estimates have mean µ, and the variances in this example are

easy to explicitly compute:

var(µ̂naive) = σ2/m;
var(µ̂unweighted) = {(1 + c)/4}σ2/m;

var(µ̂GLS) =
c

1 + c
σ2/m.

The variance of the GLS estimate is less than the other two for all c considered (i.e.
c > 1). If c > 3, the unweighted estimate has larger variance than the naive estimator.
That is, if the estimated derivatives are incorporated without using generalized least
squares, one runs the risk of creating a worse estimate of β than if one only used the
function estimates. For cases where GLS is applied, the results associated with Figure
5.1 provide a demonstration of the improvement obtainable for different c values in a
PuDI application; these results show that the simple example above carries through
to a more involved setting. The main point of this example was to demonstrate how
using an unweighted estimate can do worse than the naive approach. Note also that as
c →∞ the GLS case tends to the naive case so if one estimator is very noisy relative
to the other, then the improvement gained by simultaneously using the function and
derivative estimation in the P-spline fit diminishes. However, we show even for fairly
disparate noise magnitudes a substantial gain can be achieved in various situations.

4. Single-molecule Dynamics. The purpose of this section is to describe single
molecule dynamic experiments/simulations and the data that often arise from them.
Our approach uses a time series, {xi}N

i=1, as input and then applies local maximum
likelihood methods (in state-space) to transform the time sequence into a scatterplot
sequence of the form {ψj , f(ψj), ∂f(ψj)}m

j=1 where m is substantially less than the
number of temporal observations N . The “ψj” can be thought of as local average x
value, explained further below. We then apply the PuDI method to this sequence.
We demonstrate that incorporating the derivative information substantially improves
the model calibrated from observed time series. We stress that this procedure is re-
peated for different time series realizations and substantial variation can be measured
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between the curves estimated by P-splines. This variation is due both to the stan-
dard uncertainty associated with a finite number of scatterplot observations and due
to a latent process, unique to each time series realization, modulating the dynamical
response. The variability observed in the curves estimated from different time series
is of physical interest and suggests more sophisticated statistical analysis as future
work, e.g. functional data regression and/or a longitudinal analysis. This type of
“functional” variability has proven to be important to thermodynamic and kinetic
computations associated with some single-molecule systems [3, 6, 20].

4.1. Modeling Single-Molecule Dynamics. At time scales currently acces-
sible to many single-molecule experiments, classical statistical mechanics is often as-
sumed to be a highly accurate model of the system dynamics. These models often
involve many degrees of freedom because each atom possesses a position and momen-
tum vector. Let NDOF denote the number of degrees of freedom. Fairly sophisticated
computer simulation algorithms have been developed to include this high level of de-
tail [23]. Let the vector Γ, “the phase space vector”, represent all the degrees of free-
dom of the system. There is interest in determining simplified dynamical summaries,
e.g., use x ∈ Rr to construct a reduced order model of Γ ∈ RNDOF with r << NDOF .
Various motivations exist for appealing to model reduction. The high dimensionality
of Γ complicates computer simulations due to the small time step sizes that must be
used to ensure numerical stability in numerical integration; a reduced order model
can often be simulated for longer length and time scales [24]. In experiments, one can
usually only dynamically track a small number of degrees of freedom accurately, but
can explore longer length and time scales where various events of scientific interest
typically occur [2]. Constructing accurate reduced stochastic dynamical models from
time series coming either from single-molecule experiments or computer simulations
is one way of comparing these two information sources [2]. Rapid technological ad-
vances are closing the time scale gaps in data that can be obtained from experiments
and simulations. The smaller time scale gap will facilitate the comparison of models
calibrated from experimental and simulation data [23].

Denote the degrees of freedom directly observable, or measured from the simula-
tion, by the vector x. The term “reaction coordinate” is sometimes applied to x-type
variables. Some researchers in chemical physics believe that an ideal, or “good”,
reaction coordinate should be associated with the slowest relevant mode(s) of molec-
ular motion. When this is the case, there is hope for using an effective potential, or
potential of mean force denoted here by U(x), to approximate the dynamics of the
high-dimensional system at longer time scales [25]. The approximate force acting on
this coordinate is obtained by taking the gradient, ∇U(x). In practice it is rarely
true that an ideal reaction coordinate is known or measurable from experiments; in
these situations one should think of the potential as U(x; Γ) [2]. The unobserved de-
grees of freedom serve as a latent process and modulate the dynamical response. For
simplicity assume that the variable χ(Γ) is a scalar variable that evolves on a time
scale much longer than that associated with x. In this situation one should really
think of the effective forces as being governed by ∇U(x, χ) and this type of situation
is illustrated in Figure 4.1. In what follows we write χ ignoring the Γ dependence,
but this lurking variable is implicit whenever χ appears. In molecular modeling, a χ
type variable can be one characterizing large scale conformational fluctuations [24]; in
a protein this might be a certain dihedral angle. The presence of the slowly evolving
latent χ causes physically relevant variability in the P-spline curves we estimate from
time series data. The next section outlines more specifically how we transform time
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series coming from single-molecule experiments or simulations into scatterplot data.
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Fig. 4.1. Contour plot of a fictitious free energy landscape and some sample trajectories (Left
Panel). x represents the observable process and the variable χ characterizes the latent process. Three
sample trajectories are depicted using two distinct initial values. Two distinct initial conditions are
used to stress that randomness is inherent to the reduced dynamics and the initial condition modu-
lates the dynamics (even if the same x value is present at time zero). Since we assume ignorance
of the underlying value of χ we would estimate slightly different effective forces (and local diffusion
coefficients) due to the ignorance of this information. Snapshot of the gramicidin A channel (Right
panel). The helical structure represents a protein complex consisting of two gramicidin A monomers.
The large spheres denote potassium ions; the multiple colored spheres denote water molecules and the
lightly colored portion represents the lipid bilayer molecules. x corresponds the ion’s distance from
the channels’ plane of symmetry and χ corresponds to a dihedral angle characterizing the complex.
Each atom was explicitly modeled (plot generated using the VMD program [26]).

4.2. Modeling Observable Quantities. Assume batches of time series {x(j)
i }N

i=1

are collected from the system, where the superscript is used to index the trajectory
number and the subscript to index a time ordering of a scalar observable. In the molec-
ular dynamics community, time series are often referred to as “trajectories”. For a
given trajectory we attempt to fit a stochastic differential equation (SDE) having the
form

dxt =µ(xt, t; Γ)dt +
√

2σ(xt, Γ)dBt(4.1)

where µ(·, ·) and σ2(·) are the nonlinear deterministic drift and diffusion functions
(respectively) and Bt represents the standard Brownian motion [27]. We introduce
the following terminology “local diffusion coefficient” ≡ D̃(x; Γ) := σ2(x; Γ) in order
to distinguish the coefficient in the SDE above from the diffusion coefficient usually
implied in the physical sciences: we estimate the former using P-splines. The term
“diffusion coefficient” used in statistical physics [28] is not necessarily the same as
D̃(x; Γ). If Γ does not modulate the dynamics, the two definitions are effectively
identical.

Diffusion models of the reaction coordinates can be used to approximate a wide
range of molecular dynamics simulations [3,20,24]. Unfortunately a parametric model
is usually not known a priori for the drift and diffusion functions. Other SDE esti-
mation approaches can be entertained [27,29] but, for reasons described more fully in
the next section and elsewhere [2, 5, 6, 20], we appeal to local MLE methods. Briefly,
the inherent non-stationary nature of the data complicates ones ability to use purely
nonparametric methods. The full degrees of freedom vector, Γ, is retained in the drift
and diffusion functions to remind us that a latent process is modulating the dynamics.
We stress that for each observed time series, we estimate a new SDE model.
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4.3. From Local MLEs to Global SDEs via P-Splines. The so-called over-
damped Langevin equation is a useful approximation in statistical physics [25]. In ex-
ternally driven systems, the approximation assumes µ(x, t) := (kBT )−1D̃(x; Γ){F (x, Γ)+
FExt(x, t)}, where kBT represents the product of Boltzmann’s constant and the sys-
tem temperature, FExt(x, t) denotes the time-dependent force added into the system,
and F (x,Γ) the effective internal force due to intermolecular interactions. One ap-
peal of overdamped Langevin approximations is that drift and diffusion functions can
be physically interpreted, although other SDEs can be entertained. The use of this
structure is not necessary, but it does illustrate how our approach is not a traditional
nonparametric approach (i.e. it is locally parametric). The goodness-of-fit of the
models calibrated from non-stationary data can be checked using the omnibus tests
of Hong and Li [30]. These tests have been shown to have adequate power to identify
some interesting physical features in molecular dynamics time series [2, 24].

In single-molecule experiments/simulations we often have detailed knowledge of
the time-dependent external force added. The use of a local parametric model facil-
itates incorporating the known time-dependent force added into the single-molecule
system in the SDE model. However, we do not know the global functional form of
the local force F (x,Γ) or local diffusion coefficient D̃(x; Γ). We use polynomials to
model these quantities locally, namely in each neighborhood centered around ψ

(j)
` the

following approximation is used:

F (x; Γ) = − ∂

∂x
U(x; Γ) ≈ A

(j)
` + B

(j)
` (x− ψ

(j)
` );(4.2)

σ(x; Γ) =
√

D̃(x; Γ) ≈ (
C

(j)
` + D

(j)
` (x− ψ

(j)
` )

)
,

where the local parameter vector, θ
(j)
` ≡ (A(j)

` , B
(j)
` , C

(j)
` , D

(j)
` ), is estimated using

{x(j)
i }T`

i=T`−1
. The subscript ` is an index of a partition, 1 =: T0 < . . . < T` <

. . . < Tm := N , used to divide the total time series into m disjoint local windows.
The results reported were constructed to have ≈ 400 observations fall within a given
local window, but “optimal” bandwidth rules in this type of application would be of
interest. Also, applying recent local MLE ideas, e.g. [31], to this problem appears to
be interesting future research. The constant ψ

(j)
` denotes a specified point where we

wish to evaluate the Taylor type expansion of the expression in Equation (4.2). In
this article it corresponds to the temporal average of window `.

The global nonlinear force is constructed by applying the PuDI method to the
points {ψ`, A` + ε1` , B` + ε2`}m

`=1. The σ(x; Γ) function is obtained in a similar fashion.
The scatterplot data is obtained by finding the θ

(j)
` maximizing a likelihood approxi-

mation [32] of a local parametric SDE possessing the drift and diffusion given dictated
by Equation (4.2) and the external force we add into the system. This is done for m
windows. The two functions of interest, F (·; Γ) and σ(x; Γ) have different degrees of
smoothness and were estimated independently of one another. We have changed from
the generic notation of {xi, f(xi)+ ε1i , ∂f(xi)+ ε2i }m

i=1 used in the introduction to em-
phasize that the scatterplot information is not directly measured. We have suppressed
the superscript indexing the time series number, (j), because each estimated P-spline
function constructed in this article uses information from only one time series. The
vector (ε11, . . . , ε1m, ε21, . . . , ε2m)> is modelled as a normally distributed noise with
mean zero and a covariance matrix Σ. This covariance is meant to reflect parameter
uncertainty due to finite length of the discrete time series and can be estimated using
Monte Carlo simulation of a genuine SDE. More specifically the P-spline curves, i.e.

7



the drift and diffusion functions, estimated from trajectory j scatterplot data, were
used to construct a nonlinear SDE. This SDE was used to simulate multiple new sam-
ple paths, here we used 1000, corresponding to trajectory j. We then obtained m sets
of local MLE parameters on each simulated path and used this information to approx-
imate the uncertainty in the θ

(j)
` ’s; the empirical covariance between the m vectors

was then computed to approximate the parameter uncertainty. This procedure was
repeated for each trajectory.

5. Applications. Two sets of applications are studied. The first set of results
present Monte Carlo simulation data obtained using discrete samples of known highly
oscillatory nonlinear function contaminated with a known normal noise. A relatively
small number of scatterplot samples are used to estimate each curve. The intention
is to quantitatively study how using derivative information, along with uncertainty
estimates, influences the P-spline estimates. The function constructed was meant
to mimic the function measured in the ion-channel system of interest which is what
we turn to after results on the controlled example are discussed. We then discuss
some basic features of the molecular dynamic simulation and present results and
discussion associated with this second application. The two sets of results can be
read independently, but the information that follows is relevant to both cases.

If the original problem is to find the least squares solution to Cβ′ = y, then for a
given weight matrix W, the GLS analog of this problem would be to find the solution
to WCβ′ = Wy. Under the assumption that W is invertible and not ill-conditioned
which is the situation in the cases studied here, the GLS problem can then be viewed
as an ordinary least squares problem in a new coordinate system 1, i.e. find the
least squares solution to C̃β′ = ỹ. The penalized least squares problem associated
with the P-spline problem requires finding the β′ ≡ (β, u)> vector that minimizes
‖ỹ − C̃β′‖22 + α‖u‖22.

We use several different weight matrices to construct standard least squares prob-
lems and these matrices require us to define some parameters: nMC is a parameter
determining the number of vectors drawn from a mean zero normal distribution pos-
sessing the covariance Σ. These vectors are used to form a simple empirical estimate
of Σ. Note that in the first application the Σ associated with the scatterplot data
is known and used to generate the Monte Carlo samples, in the second application
we assume that the parameter distribution of the local MLE procedure can be ade-
quately approximated by a normal distribution although the associated covariance is
not known to us in closed-form; the procedure we use in this application was described
earlier. The various weight and design matrices considered are listed below.
Case 1 C1 = W−1

1 CPuDI, and W1 is the Cholesky factor of the measurement noise
covariance: recall, that this is known exactly in the first benchmark applica-
tion.

Case 2 C2 = W−1
2 CPuDI, and W2 is the Cholesky factor of the estimated measure-

ment noise covariance using nMC = 5× 104.
Case 3 C3 = W−1

3 CPuDI, and W3 is the Cholesky factor of the estimated measure-
ment noise covariance using nMC = 1× 103.

Case 4 C4 = CPuDI.
Case 5 C5 = P1C

PuDI, where P1 = (Im×m, 0m×m) i.e., use only function information.
Case 6 C6 = P2C

PuDI, where P2 = (0m×m, Im×m) i.e., use only derivative informa-
tion.

1If Σ happens to be ill-conditioned, numerical methods exist for treating this situation [21].
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The CPuDI, design matrix was formed using the TPF basis parameters K =
20 and p = 2. The quantiles were used to select the knot locations [33, 34]. The
regularization/smoothing parameter was selected using GCV in all cases. The results
did not change appreciably if we used other criteria, e.g. AIC, used p = 3 or if we
increased K. [9].

5.1. Benchmarking PuDI on a Smooth Nonlinear Function. Here we
quantitatively study how a PuDI type design matrix can assist in the estimation of a
known function under different noise conditions on the scatterplot data. Recall this
function was constructed to mimic the salient features of curves coming from single-
molecule data studied later. This function is written explicitly in the Appendix.

5.1.1. Data generation. Each grid point xi was associated with the noisy mea-
surements f(xi) + ε1i and ∂f(xi) + ε2i . An i.i.d. two-dimensional Gaussian noise with
mean zero and covariance matrix

Σ̃ ≡
(

σ2
f ρσfσ∂f

ρσfσ∂f σ2
∂f

)

was used to generate the noise for each grid point xi. The diagonal of this 2 ×
2 matrix was varied, one diagonal component was always set to be unity, and the
correlation coefficient, ρ, between each ε1i and ε2i was set to zero in the plot shown in
this subsection. The net covariance matrix, Σ, associated with the P-spline scatterplot
data was sparse due to the i.i.d. noise structure used. In the ρ = 0 case, Σ is a
diagonal matrix defined by the vector (σ2

f , . . . , σ2
f , σ2

∂f , . . . , σ2
∂f )> ∈ R2m. The ρ > 0

case covariance had the same structure plus two off-diagonal bands each consisting of
m repeated entries of the product ρσfσ∂f . Tables reporting results with ρ = 0.5 and
ρ = 0 are reported in the Supplementary Material; the same qualitative trends are
observed in each case.

5.1.2. Results and Discussion. Figure 5.1 plots the logarithm of the average
average mean square error (AMSE) associated with predicted f and ∂f for various Σ’s.
The PuDI estimates using the weights, design matrices C1-C3, outperform all other
methods. In both f and ∂f , as the ratio of the diagonal terms of Σ tend to 0 or ∞, the
PuDI estimate approaches that of the “naive estimator”. The naive estimator uses
design matrix C5 or C6, with the selection depending on σf/σ∂f as shown in Figure
5.1. The limits of 0 or ∞ mentioned above indicate the extra information provided by
using both f and ∂f is negligible in relation to the information accessible to the naive
estimator. However there is significant gain for a large range of σf/σ∂f values. Also
note that using an empirical covariance approximation was nearly identical to the case
where the exact covariance Σ was used. Note also that the estimate of the Cholesky
factor, obtained using nMC sample vectors of the Σ matrix was dense whereas the
known underlying Cholesky factor, W was highly sparse. The sampling noise caused
the estimated Cholesky factor to appear dense, but this artifact did not hurt the PuDI
estimate utilizing W2 or W3.

The vertical lines denote the point where the average AMSE estimator using
both f and ∂f but ignoring the different noise variances, i.e. use design matrix C4,
is greater than that of applying the naive estimator to the less noisy random vector.
The intuition gained from the two dimensional normal variable result dictates that
this cross-over should occur when the noisier estimate is a factor of three greater than
the other estimate. Recall that our situation is more involved due to the smoothing
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parameter selection and other tunable parameters, but nonetheless the crossover oc-
curs close to three. The exact crossover point depended on whether f was noisier than
∂f or vice versa. Note that in the PuDI design matrix cases, we utilized estimates
of f(xi) and ∂f(xi) and selected α̂ which minimized the GCV consistent with both
measurements. Since the smoothness is different in each function, the resulting α̂
represents a type of weighted average between the α̂ that would have been selected
had only f(xi) or ∂f(xi) been used individually. The mixed model formulation allows
one to readily see why for a GLS estimate, that the smoother function dominates the
α selection.
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Fig. 5.1. AMSE of f(x) (left panel) and ∂f(x) (right panel) using various semiparametric
estimators. The x-axis plots the ratio of the variance of the f noise to that of the ∂f noise and
the y-axis contains the AMSE measured over 1 × 104 Monte Carlo simulations. In each case the
weighted PuDI methods (Cases 1-3) outperform the other estimators. These plots also demonstrate
how findings from simple multivariate arguments carry through to these nonlinear semiparametric
regression spline fits. The vertical red lines indicate the point at which the naive estimator (using
only f or ∂f information) outperforms the PuDI estimator using f and ∂f , but weighting the
observations equally (i.e. Case 4). See text for additional details.

5.2. Applying PuDI to Estimate SDEs Characterizing Ion-Channel Dy-
namics. For those not interested in the fine details, one can think of this application
as a type of study in longitudinal data analysis [9]. There are several subject spe-
cific responses and the deviations from the mean population function provides useful
information about the individual curves, which here correspond to unobserved, but
physically important, phase space information. The interest is in the different types
of effective forces experienced by a potassium ion as it travels across a pore formed
by a single protein lodged in a lipid bilayer. This lipid bilayer serves as a boundary
between the interior and exterior of a cell and does not permit water or ions to easily
pass in the absence of an open ion channel. A schematic of the gramicidin A ion chan-
nel studied is provided in Fig. 4.1. This particular system was selected because it
has been extensively studied both experimentally and theoretically. This ion-channel
is commonly used as a benchmark in molecular dynamics simulations [35]. The re-
sults we study introduce an external force into the system to “steer” an ion across
the channel in a prescribed time. Measurements from these simulations can and be
used to back out a potential of mean force and diffusion coefficient using recently
developed nonequilibrium statistical mechanics methods. These quantities are often
of interest in a variety of single-molecule simulations. We demonstrate how capturing
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the variation induced by χ type variables is important for making predictions. The
physical relevance of this type of variability is described in detail elsewhere [3].

5.2.1. Data generation. The NAMD program [36] was used to generate steered
molecular dynamic simulations [25] consisting of 36, 727 atoms. Constant particle
number, pressure and temperature (NpT) simulations were used. The x coordinate
corresponds to the distance between the center of mass of the channel and the ion’s
axial location within the channel; this position was recorded every 0.1 ps for 1 ns. The
resulting time series were then divided into m = 40 disjoint windows and the P-spline
data was obtained from the sequence of local MLEs taken along this partition. In
all cases, the estimated local MLE parameters along with the in sample time series
passed goodness-of-fit tests appropriate for the non-stationary data [30]. A more
detailed account of the simulation methodology is reported in [3].

5.2.2. Results and Discussion. Figure 5.2 displays the global nonlinear effec-
tive force obtained using 10 separate steered molecular dynamics realizations. Only
results obtained using design matrices C2,C4, and C5 were considered because the
true Σ is unknown and the interest is in the function itself (not the derivative). We
observe that results obtained using C2,C4 appear roughly similar, but C5 appears to
be over smoothing due to the lack of derivative information. The rightmost panel
focuses on the binding pocket of the channel. This binding pocket is a local minimum
on the free energy landscape; here we see that the differences between the C2 and C4

curves are more pronounced.
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Fig. 5.2. The different curves correspond to the effective force estimated from 10 realizations of
time series data. After processing these time series, we obtained sets of 10 scatterplot data. These
data sets were then processed with design matrices C2 (dark solid), C4 (dashed), and C5 (light
grey). The underlying scatterplot data is the same regardless of the design matrix used; differences
in curves are due only to the P-spline design matrix. See text for additional information.

Once the P-spline is estimated, we can construct a global nonlinear SDE (see Sec.
4.3) and then simulate multiple realizations of the process using a large number of
Brownian paths. The multiple Brownian paths are supposed to quantify the inher-
ent variability caused by neglecting “uninteresting” fast-scale motion in the detailed
dynamics. This type of variability, associated with one steered molecular dynamics
path, can be important in several contexts [2, 5].

The nonequilibrium work associated with steered molecular dynamics simulations
is one example illustrating the item above. The work tubes associated with a single
steered molecular dynamics realization can be computed using the estimated SDEs.
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Fig. 5.3. The work tubes simulated using the 10 SDEs constructed from stitching together
local SDE models by P-spline design matrices C2 (left panel) and C4 (right panel). Each work tube
is made of 1000 work trajectory simulations using the 10 global SDEs previously mentioned. The
thick lighter color curves correspond to the work trajectories measured directly from the 10 steered
molecular dynamics simulation (one work trajectory per steered molecular dynamics trajectory). The
P-splines used the same scatterplot data in the left and right panel, only the design matrix changes
and this alone explains the difference in the estimated curves.

We can use the SDEs to simulate the nonequilibrium work and compare the variability
between these work tubes. Each tube is computed from information contained in one
SDE corresponding to one molecular dynamics trajectory. The variability between
tubes provides information about the fluctuations induced by a latent χ type process
whereas the width of each single tube can be attributed to fast-scale noise experienced
by the steered molecular dynamics path. Figure 5.3 demonstrates that the different
level of smoothing associated with C2 and C4 substantially affects the predictive
ability of the corresponding global SDE model. Note that the underlying scatterplot
points are the same in all cases, only the P-spline design matrix changes. The different
predictions have consequences in physical quantities computed from these simulated
work paths. For example using C2 gives improved potential of mean force and diffusion
coefficient estimates compared to other methods [3].

6. Conclusions and Outlook. We demonstrated how a single-molecule time
series can be transformed, via local maximum likelihood type methods, into scat-
terplot data approximating pointwise function and derivative information associated
with a SDE. The functions needed by a SDE approximating the global dynamics of
the time series were obtained using P-spline techniques. The PuDI design matrix was
shown to be useful in this context. The PuDI design matrix exploited some of the
advantageous properties of the TPS basis; numerical difficulties were overcome with a
recent algorithm [17]. The use of GLS along with P-splines was shown to influence the
estimated curves and the difference was shown to be relevant in regards to simulating
physical quantities of interest. For example the work computation associated with
the ion-channel system studied benefited substantially from the GLS implementation.
When this procedure was repeated for different time series, it was shown that the
global SDE functions estimated from different time series exhibited variation in part
due to a latent process, i.e. our data consisted of “subject specific curves”. We briefly
discussed why this is relevant information to modern biophysics applications [15,24].

Although we focused on simulation data, the methodology is also applicable to
experimental data [2, 6, 7]. Applications making fuller use of pointwise function es-
timates and derivative proxies calibrated from time series, as the PuDI method was
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demonstrated to do, show promise as tools that can be used for understanding the
rich amount of information contained in recent single-molecule experiments and com-
puter simulations. Other areas where function and derivative scatterplot information
is available and a PuDI might be helpful include geosciences [11] and finance [10].
MATLAB scripts illustrating the PuDI method are available via the Supporting Ma-
terials.
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7. Supplementary Material. Reference function (studied in Section 5.1) con-
structed to mimic features of effective forces in the ion-channel modeled was

y =− (
2.5 sin(2π

6x

15
) + 9 exp(− (x− 3)2

2
) + 5 exp(− (x− 10)2

2
)− 2

)
/3;

(7.1)

Note: the channel is symmetric with respect to x = 0. We studied the situation where
x ∈ [0, 15] whereas the expression above is valid for x ∈ [−15, 0] (the net channel spans
−15 to 15 in units of Å [3]). A simple reflection at x=0 gives the result we report.

Table 7.1
Average AMSE 〈‖f − f̂‖22/m〉 and measured standard deviation in parentheses for several es-

timators of f in the MC study described in Section 5.1. The subscript corresponds to the design
matrix used and the “Noise Ratio” refers to the ratio of σ2

f /σ2
df . The correlation coefficient ρ was

set here to 0.5 (this parameter is needed to specify Σ).

Noise Ratio f1 f2 f3 f4 f5

1/16 0.28(0.10) 0.27(0.10) 0.29(0.10) 1.05(0.36) 0.47(0.18)
1/4 0.21(0.08) 0.21(0.08) 0.22(0.08) 0.36(0.13) 0.47(0.18)
1/2 0.18(0.07) 0.18(0.07) 0.19(0.07) 0.24(0.09) 0.47(0.19)
2 0.22(0.11) 0.22(0.11) 0.23(0.11) 0.29(0.14) 0.86(0.26)
4 0.33(0.19) 0.33(0.19) 0.36(0.20) 0.51(0.26) 1.31(0.46)
16 0.80(0.63) 0.80(0.63) 0.86(0.68) 1.95(0.92) 3.00(2.06)
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Table 7.2
Average AMSE 〈‖f − f̂‖22/m〉 and measured standard deviation in parentheses for several es-

timators of f in the MC study described in Section 5.1. The subscript corresponds to the design
matrix used and the “Noise Ratio” refers to the ratio of σ2

f /σ2
df . The correlation coefficient ρ was

set here to 0 (this parameter is needed to specify Σ).

Noise Ratio f1 f2 f3 f4 f5

1/16 0.36(0.14) 0.36(0.14) 0.39(0.15) 1.06(0.36) 0.47(0.18)
1/4 0.27(0.10) 0.27(0.10) 0.29(0.10) 0.36(0.13) 0.46(0.18)
1/2 0.22(0.09) 0.22(0.09) 0.24(0.09) 0.24(0.09) 0.47(0.18)
2 0.27(0.13) 0.27(0.13) 0.29(0.14) 0.29(0.13) 0.86(0.26)
4 0.41(0.22) 0.41(0.22) 0.43(0.24) 0.51(0.25) 1.30(0.44)
16 0.93(0.69) 0.93(0.69) 0.98(0.72) 1.94(0.91) 2.98(2.03)
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